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Longitudinal phonons and high-temperature heat conduction 
in germanium 
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Abshcl. Using the nlaxalion time appmach, we present a new analpis of phonon 
conductivity which shows that at high femperature (!l‘ > 8 ~ ,  the Detye temperature), 
the longitudinal phonons are the dominant heat caniers in germanium. h e  present 
rerulI, which is a mnsequence of the &ect of phonon dispersion on the Callaway 
i n t e p l  hor lattice thermal conductivity, is conmry to the general telief that uansvnse 
phonons 8ny heat at T > OD. A qualitative justification has also teen given for the 
three-phonon scattering plametels obtained. 

1. Introduction 

After Parrott’s [l] paper on Si-Ge alloys, many workers [Z-T except Guthrie [8,9] 
concluded that at temperatures greater than the Debye temperature, the phonon 
conductivity ‘K‘ is chiefly dominated by transverse phonons. Guthrie 191, however, 
could not give any quantitative justification for his doubts. In €act, this result was 
the consequence of an inappropriate inclusion of phonon dispersion in the Callaway 
integral [lo] for phonon conductivity. For example, F’arrott [l] introduced the idea of 
two-mode conduction without considering any nonlinearity in the phonon dispersion 
curves. He could amve at the above-mentioned result only qualitatively by exploiting 
the correction term of the Callaway model [lo]. On the other hand, Holland [Z], 
guided by Callaway’s failure in interpreting the high-temperature phonon transport, 
included a partial effect of phonon dispersion in the conductivity integral by splitting 
the transverse acoustic (TA) branch into two approximately linear regions. Neglecting 
the correction term of the Callaway model, he wrote 

where [3] 
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where, from figure 1, 0 E { q  = 01, 2 E { q  = O.Sqm], and 3 E {q  = qm). Also 
O,(n) = hw,(n)/kB, X being the polarization index, z = hw/kBT, 6, = 4 and 
bt = $. vd and vpx are the phonon group and phase velocities. T;', T;', r;' 
and q1 are the relaxation rates, respectively, due to phonon-boundary, phonon- 
pointdefect, umklapp and normal three-phonon scattering processes. In the Holland 
model, the inclusion of phonon dispersion was partial because (i) phonon-point-defect 
scattering processes were not supposed to be influenced by it and @) v&/v& was 
approxhated by l/v,, in all the integrals. 

91%" 
FWre 1. Mean phonon dispersion CUNW in germanium, after 1141 

Holland neglected the correction term in his model and explained the high- 
temperature K of Ge only through the short-wave transverse acoustic ( S W A )  phonons 
belonging to the strongly dispersive region of the transverse branch, i.e. K@). Many 
workers [4-7'J, basically following the Holland model with some variations, obtained 
similar results. These results were also supported by Hamilton and F'arrott [ll] 
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Figom 2. Experimental CUN~S for the phonon mndunivity of normal (0) and enriched 
(A) Ge. For a" 1, 
Bla(23) = 5.09 x lo-' deg-'; Bh(Z3) = 2.04 x s deg-l; and for w e  2 
B,,,(Z3) = 2.M x lo-* des-'; BlU(Z3) = 3.61 x s deg-' (small normal process). 

3 and 4 are the theoretical CUN- obtained, respectively, for normal and enriched 
Ge, after adjusting K at 3M) K for normal Ge with B&3) = 1.16 X s deg-' 
and Bh(23) = 2.80 x lo-' deg-'. 

Curves 1 and 2 are obraincd from [Kl(B) + Kt(Z3)l. 

who, with the use of the variational principle for solving the phonon BOltmaM 
equation, showed the dominance of the transverse phonons almost in the entire 
temperature range. This result was also obtained within the framework of a non- 
dispersive isotropic model. 

After an adequate inclusion of phonon dispersion in the calculations of phonon 
conductivity, the present work reconsiders the role of longitudinal and mansvene 
phonons at high temperatures. The approach of the calculation is given in section 
2 and the results, which contradict the general belief regarding the dominance of 
transverse phonons at high temperatures, are discussed in section 3. 

2. Theory 

21. Phonon conductivig: the general erpression 
We observe that Holland's expression for phonon conductivity in the two-mode 
conduction model is incomplete in the sense that it ignores the correction term, 
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which appears in the Callaway model [lo] due to the special treatment of momentum 
conserving three-phonon normal processes. The complete expression was provided by 
Parron (121 for the nondispersive isotropic model A direct view of the contribution 
of LA and TA parts of the correction term cannot be taken from Parrott’s expression, 
which is as follows: 

where K, has the same form as defined in (In) and the correction term 

In Parrott’s [12] work, uA = vg, = ypA. It would be in our interest to write this 
expression in the presence of phonon dspersion, ie. when U@ # up,. In equation 
(4) of F’arrott’s paper (121, if we convert q to w, we get Jd3q = 4rJq2dq = 
4 ? r S ( ~ ~ / u ~ ~ ) / u ~ d w .  Here up, = w / q  and U& = dw/dq. Putting x = tiW/kBT, 
N = (e - l ) - I  and using this conversion in equation (4) of [12] we can easily obtain 

Here 7;’ is the total relaxation rate of a11 the processes which do not conserve 
the crystal momentum. We next study the &ea of phonon dispersion on various 
quantities in the integrals defined in equation (2-2b). 

21.1. Phonon-point defect relaration rate. According to Carruthers I131 

where r = C,fi(l  - Mi/M)z, f, being the fractional abundance of the isotopes and 
Mi their atomic mass. q and q’ are, respectively, the incoming and outgoing phonons; 
kqA is the polarization vector and Q, the atomic volume. lb simplify equation (3), we 
replace (SqA . 6q,A,)2 by its angular average, which is $ Further, figure 1 shows that 
the energy consemtion condition would roughly allow a particular incoming phonon 
to be scattered only through those processes which are given in table 1. Keeping these 
processes in view and integrating the RHS of equation (3), expressions for T;’ are 
obtained for the incoming phonons (q ,  A), iying in the different domains of figure 1. 
All these expressions are also given in table 1. 
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lbbk 1. Pouible point defect scattering proccws for an incoming phonon and 
"spending erpressions tor the relaxation rdtc t)i(m) = v~(m)u&(nm)  and 
Ao = n o r l 4 K .  

Incoming PofsiMe outgoing 
Region Domain phonon phonon r;',A = I Q I  

21.2 W w n  m t a  for phonon scattering by the aystal surface and other phonons. 
Phonon scattering by the crystal surface is effective only at IOW temperatures 
(T < 10 K) where low-frequency phonons dominate. So r;* would, more or less, 
remain uninauenced by phonon dispersion; the three-phonon relaxation rates are, of 
course, strongly affecred by it. lhis will, however, automaticalIy be taken care of 
since their scattering strengths are usually treated as adjustable parameters. 

21.3. ntefacror vgA/viA.  Phonon dispersion the phonon conductivity integral 
through the changes in vgA and vpA with IgI. From figure 1, values of v&(w)  can be 
easily calculated from the relation v ( 9 )  = ~g,(02)m33/mo2, where ~ ~ ( 0 2 )  (the 
mean group velocity of the phonons in the region (02)) is given in [Z]; and mzt and 
m, are, respectively, the mean slopes of the dispersion curves in regions (23) and 
(02). In the domain (OZ), vpA(w) = vgA(w),  while in the domain (U) we introduce 
the following relation: 

9x 

" p x ( w , w  = V , A ( W / ( l  -m4 (4) 

where (= Zrp,) is clearly shown in figure 1. 

22 An approptiate "presson for K under dispersion efects 
In this paper, the Holland model has been improved by dividing all the integrals 
from equation (2) in such a way that the group velocity as well as the prefactor of 
the phonon-point-defect scattering rates remain almost independent of w in a given 
subintegral. Thus table 1, together with figure 1, suggests that the longitudinal branch 
should also be divided into three parts. Consequently, the expression for the phonon 
conductivity in equation (2) becomes 

K = K,(O 6 4 6 0.39,) t Ki(0.3qm 6 q < O-5qm) + IC,(0.5qm < 6 q m )  
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+ KI(O 6 q 6 03,) + KI(0.5q, 6 q < O.%,) + K, 
= Kl(O1) + KI(12) + Kj(23) + Kt(m) + K A W  + Kc 
= K, + IC,(23) + K I P )  + K,. (5) 

In &(U), the region above 0.75q, has been neglected because, there, vs is nearly 
zero for all directions 1141. 

23. Three-phonon relaxation rates: the high-temperature kinits 

TJ calculate various terms in equation (9, we require the high-temperature parametric 
forms for various T;' and rL1, which, in tum, strongly depend upon the phonon 
polarization, frequency and temperature. The relaxation rates for T ~ ' ( Z ) ,  ~ i ' ( 2 3 )  
and +,;'(23) are not available in the literature. On the basis of previous work [1,5 Sl, 
however, we can derive the following information for various three-phonon relaxation 
rates. 

(i) The exponent of frequency for umklapp processes is higher than that for 
normal processes. 

(ii) The exponent of frequency for longitudinal phonons is higher than that for 
transverse phonons. 

(iii) At high temperatures the exponent of temperature is unity for all the phonons 
involved in any type of threephonon processes. 

In table 2, only the high-temperature forms of all the threephonon relaxation 
rates along with their references are given. While some of the expressions are being 
proposed by us, most of them have been derived by Parrott [l] for low-frequency 
phonons. Following Klemens {IS] and Sharma et al (161 the relaxation rates of 
umMapp processes have been multiplied by the factor where 0 is the mean 
value of 0,s corresponding to their zone boundary values for all phonon dispersion 
branches. n depends upon the particular 'scattering process' as well as 'dispersion 
effects'; and it is assumed to be an adjustable parameter. 

A comment is needed for the expression ~ G ' ( 2 3 )  proposed on the basis of the 
available form of ~ ; ' ( 2 3 ) ,  which tends to B,(23)wT at very high temperatures. 
This, on the basis of point (i), suggests that in ~ i ' ( 2 3 )  the exponent of w should be 
less than one. This would make r,;'(U) a very slowly varying function of w which 
in itself changes very little in the region (23) of the TA branch. Therefore the factor, 
which depends upon w in ~,;'(23), has been absorbed in the parameter B,(23) 
itself. 

Similarly, the other proposed forms are also consistent with the above written 
statements; we do not claim them to be very accurate. These semiphenomenological 
expressions for 7;' and T;' (see table 2) are actually replacements of general 
integrals which become very cumbersome due to the anisotropic as well as dispersive 
nature of the crystal. The forms of 7;' and T-;' depend upon phonon polarization, 
frequency and temperature. In fact the detailed workout for these expressions is 
not attempted because some variation in their form is not going to affect our final 
conclusion. 

It should not be forgotten that the expressions for three-phonon relaxation rates 
chosen by us ignore interactions with optic phonons. In fact the existence of optic 
phonons cannot be overlooked at high temperatures and, due to their low group 
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Ibbb 2 'Ihm-phonon relaxation ratet and "Spondmg prametas used for theamical 
calculations of K m 4 u m  3 and 4. c indicates tbal lhc apression b obtained try 
multiplying the Bctor ap(-@/eT) m Parmtt's [l] results p stands for our avn 
Pmpasab. 

Reeion Relaxation mte B 

6.91 x s deg-3 
E O  
3.55 x IO-= s deg-3 
1.80 x lo-% s? d e r Z  
6ee captions for figures 
3 a n d 4  

1.01 x lo-" d q - 4  

5.57 x 10-3 s deg-3 
8.0 x l@ deg-' 

1.54 x lo-'* s 

velocity, they are bound to enhance the total scattering quite considerabl However, 
according to Logachev and Yurev 111, this interaction still gives 7&ih a T at 
T >> OD, and so it would not be irrelevant to assume that three-phonon scattering 
parameters, in particular, will automatically take care of these processes when 
adjustments are made for the phonon conductivity data. 

3. Results and discussion 

3.1. Role 0fSWra and optic phonons 

Following the work of Beman and Brock [LS], we neglect K, at the fust instance 
whilst calculating the phonon Mnductivity at high temperatures. Similarly K,(Ol), 
Kl(12) and K,(M),  which correspond to low-frequency phonons, are also neglected 
on the basis of [2,.5,1. Thus initially the phonon conductivity data were attempted 
to be fitted only with [K,(23) + K,(23)]. The values of various physical constants 
used are given in table 3. Rgwe 2 @es the experimental [2,l9] as well as the 
theoretical curves obtained from {K,(23) + K,(23)} in the temperature range 2W 
loo0 IC Parameters used for the calculations are given in the figure caption. The 
parameter 'A,,' is obtained from Holland's value [2] for the long-wave phonon-point- 
defect scattering parameter in Ge. 

According to these calculations, we find that K,(W) = 0.03 W an-' K-I at 
T = loo0 K, even if ~;'(23)  is totally neglected. This result is very small compared 
with the experimental value for K (= 0.17 W an-' K-I) at T = loo0 K The 
addition of .,;'(U) in .;'(U) will cause a further decrease in K,(Z3). Holland [Z] 
and others [3,51 obtained high values for K,(23) due to the following reasons. 

(i) While Holland's replacement of [v,(23)v,t2(23)] by v i ' ( Z 3 )  is true only in the 
non-dispersive model, the approximation of Sharma et d [5J gives [ v , ( 2 3 ) ~ , ; ~ ( 2 3 ) ]  
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W k  3. Values for some s l cu la ld  physical quantities used in the calculation d phonon 
mndunivity. 

Lc = 0.193 an (normal) 
= 0.27 cm (enriched) 

Ao = 1.355 78 x 
8, =333 K 
e, = iz K 
e = 194 K U - 1  

w&?Z) = 4.97, x lo' an s-l 
vd(Z3) = 3.25 x lo' an 8-1 

us(&?) = 3.55 x Id cm 5-l an3 
us@) = 1.13 x lo' an s-1 
6, = & = 8.32 x lo'2 (ps 
- 

somewhat larger than vG'(23). On the other hand, from figure 1, it is obvious 
that as .,(U) -+ 0, ~ ~ ( 2 3 )  becomes much larger than ~ ~ ( 2 3 )  and consequently 
one gets [ (v , (23)~;~(23)]  m be less than vS'(23). Thus, the abatementioned 
approximations are unrealistic. In this work, a much more realistic approximation for 
vpx, defined through equation (4) gives 

.@X(W)/~;x(W) = (1 - w w ) 2 / ~ , x .  

This factor obviously becomes vely small for TA phonons in region (23). 
(ii) Holland [Z] and others [5,7 neglected the dispersion ef€m on T;' also. For 

TA phonons in region (U), the corrected wlues for ~ ~ ( 2 3 )  and ~ ~ ( 2 3 )  very much 
enhance the rate ~;'(23) which, in turn, decreases K,(23) to a large extent 

(5) It is well known that the three-phonon processes for strongly dispersive li4 
phonons are much stmnger than IA honons. So, ~ G ' ( 2 3 )  must be chosen at least 

higher than the one chosen by Holland [2] and ultimately it makes Kt(23) negligible 
in the present model. 

We therefore conclude that K,(23) or the high-frequency TA phonons cannot 
contribute much to the high-temperature phonon conductiviry of germanium. 

Little participation in K can be expected fmm the optic phonons on similar 
grounds. Fbr optic phonons, generally, up is very large and vp small (see figure 1). 
As a result, u p / v h  becomes too small to allow any significant contribution from these 
phonons in the total K. Only short-wave LO phonons may become controversial as 
their gmup velocity is somewhat larger. Still, in this case also, vdo/u$, should be 
much smaller than its value for short-wave IA phonons and, ultimately, we believe 
that this contribution can also be neglected. In the absence of any exclusive work 
regarding three-phonon relaxation rates for optic phonons, a complete check does not 
seem possible. Nevertheless, our analysis i s  in line with the estimates of Logachev and 
Yurev [17] and the two-fluid model of Armstrong [20] who mume that the phonons 
belonging to the strongly dispersive regions do not participate in the heat transport 

3.2. Role of s m  (K,(23)) phonons 

If K, and ICc are to be ignored in equation (S), one is left only with short-wave 
LA phonons, which can explain the heat transport in Ge at high temperatures. 
Figure 2 shows that, through a proper choice of B,,(23), a reasonable fit to 
the experimental data can be given above 600 K Figure 2 also shows that there 
is an increasing discrepancy between the theory and experiment towards lower 

an order of magnitude higher than 7; s (U). This results in a value for ~z'(2.3) much 
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temperatures. Therefore, it can be argued that a much lower value for B,"(23) 
(Le. ~i'(23))  and the inclusion of four-phonon processes is a more releant way of 
explaining the high-temperature data for K and, in fact, this procedure ms adopted 
by a few workers 14,211. However, figure 2 shows that the low value of B,,(23) 
obtained through such an attempt overestimates the phonon conductivity of enriched 
Ge a little too much. Thus, this approach would make a simultaneous explanation 
of K in both normal and enriched germanium almost i m p i b l e .  Secondly, T.$ 
proportional to w2Tz 122-241 should give K o( T-* at  high temperatures wWe the 
experimental data for both Ge and Si weal that beyond T = 800 K, K varies even 
more slowly than T-' (see figure 2). lXis ascertains that four-phonon processes do 
not inauence phonon mnsport much. 

3.3. Role of low-frequeency phonons and the cmection teim 

Now the discrepancy below 600 K has to be attributed to the omitted terms from 
equation (5). If all the terms in equation (5) are included, table 2 suggests that many 
parameters have to be estimated for such a calculation. This causes the adjustment 
of the correction term to be very difficult in a two-mode conduction model. 'la ow 
hwledge ,  no one has made any attempt to do this. Here, however, we try to give 
a rough estimate for K, and K ,  above ux) K by choosing the high-temperature 
limits of all the three-phonon relaxation rates given in table 2 k r  the normal 
processes in K,(Ol) and K,(O2), we start with the parameters used by Holland [2], 
and the rest have been adjusted for the best fit. The parameters used are given in 
table 2 and the results obtained after adopting this scheme are depicted in figure 3. 
Figure 3 shows that a reasonable fit between theoretical and experimental values for 
K can be obtained in Ge, even when longitudinal phonons are chosen to be the 
dominant heat camers at high temperatures. Further, figure 4 shows that the =lues 
for phonon conductivity obtained for enriched Ge with the same set of parameters 
are also reasonably good. 

Although, unless the analysis is done in the entire temperature range, nothing 
can be said about the uniqueness of the adjusted parameters, we still try to give 
some justification for their obtained values. In K , ( U ) ,  a large amount of normal 
processes (E umklapp processes) results in a larger discrepancy between theory and 
experiment at lower temperatures (see figure 3) in normal Ge. On the other hand, 
in enriched Ge, the results are improved (see figure 4). Thus, we believe that large 
normal processes in K,(23) will go against the possibility of simultaneous fitting of 
the phonon conductiviq data for both normal and enriched Ge with the same set of 
three-phonon parameters. Thus, for a better fit, the normal processes are assumed 
to be decreasing with IqI in order to reduce their value in region (23). Theoretically, 
this result 6 not unexpected as the area of integration in the integrals for 7;' [ll,25] 
decreases with 191. In the case of umklapp process for longitudinal phonons, we find 
that ~ i ' ( Z 3 )  does not increase with IqI very sharply beyond q 2 qJ2. This result 
seems to be somewhat abnormal because in 7;' the area of integration must increase 
with jq(. The possible explanation for this can be given on the basis of the diminishing 
probability of the processes ?A + m z! O+ G, when IqI becomes greater than 1q,/21 
(see figure 1). 

These calculations show that HolIand's assumption [2] of connecting the high- 
temperature phonon conductivity With high-frequency phonons only is not justified. 
Low-frequency phonons also play some role at T > OD through Kt(02), K,(Ol), 



310 K C Sod and MKRoy  

Figure 3. Experimental points for normal Ge (0). Curves 1 and 2 arc obtained values for 
fhe phonon fondunivity born equation (5). For cum 1, Bl.(?3) = 1.69 x IO-’ deg-’, 
Bul(23) = 7.29 x deg-’, 
B1.(23) = 6.53 x lo-” 6 deg-’ (large normal pmcerr). K,, K,, K1(01), Ki(l2). 
Kl(23), Kt(M) and Kl(!mtal) arc defined in tbs IexI. 

s deg-’; and for curve Z Bb(23) = 3.98 x 

Kl(12), and K,, whose individual contributions are also plotted in figure 3. Thus, 
even though Kt(23) is bound to be negligible (see section 3.1), transverse phonons 
do give some contribution at T > BD via K,(O2) and K,. 

Despite the fact that the relative importance of different terms in equation (5) is 
subject to the accuracy of the various parametric forms of the relaxation rates used 
in this paper, we believe that the dominance of the longitudinal phonons beyond 
T = eD(= 376 K)  looks almost certain as their net contribution K,(totaI) = 
K,(OI) + Kl(12) -t If,(=) in total K is more than 75% beyond T $. Here 
the mntribution of longitudinal phonons via K, is not included. This conclusion can 
be controversial only in the unlikely situation where K, and K, may become the 
dominant terms, even at high temperatures. 

It is also obvious from figure 3 that there is still some discrepancy between 
theoretical and experimental values below T = 400 K The results could be improved 
by choosing B,,,(U2) and B,,(l2) somewhat lower and 8,(23) a little higher. 
But then the fitting beyond T = 500 K is disturbed. As a matter of fact, this 
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Pigom 4 Theoretical and experimental ydlues for K for mriehed Ge with AA = 4/15 
For a” 1, Bh(Z3) = 1.69 x IO-’ deg-’, Blu(Z3) = 7.7.9 x IO-” 1 deg-’; and tor 
m e  Z Bh(23) = 3.98 x deg-‘, = 6.53 x IO-” s deg-’. ’Re m a m m g  
parameters are given in tables 2 and 3. 

discrepancy is, actually, not unexpected because the three-phonon relaxation rates 
will in general not obey a T* dependence below T 300 K (see section (2.3) and 
[SI). An exact explanation at lower temperatures would not only require the modified 
parametric forms of the three-phonon relaxation rate expressions, but also a thorough 
readjustment of all concerned parameters. In fact, in our opinion, a reliable estimate 
for the relative scattering strength of =Mus three-phonon processes can be made 
only through a simultaneous explanation of the phonon conductivity of both normal 
and enriched Ge in the entire temperature range. This may be treated as a separate 
problem and the main conclusion of the present paper, that at high temperatures 
longitudinal phonons should Q I T ~  the main part of lattice heat, is Convincingly drawn 
without going into all these details. 

Although we have not made an attempt m do the calculations for Si GaSb, 
GaAs, etc. the result can be extended for these also because they have similar phonon 
dispersion curves. 
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